在试验条件的规定中,也许是考虑到沸点受海拔高度的影响,限定了不超过1000m的条件。但事实上,直接影响沸点的是气压而非海拔高度,而且限定海拔高度不利于将来在不同地区做检验。因此,对于和煮沸有关的试验,规定环境大气压更为科学,这样即使在高海拔地区也可以在增压实验室中完成。同时,应根据环境大气压范围确定煮沸水试验对应的温度限值,或者对高海拔地区的试验要求做出特殊说明或注释。另外,从严谨性考虑,还应对试验用水做出规定,没有特殊规定的使用纯水或蒸馏水,如“蒸汽密闭性能”等需要试验后进行电气强度验证的项目,必要时使用同GB4706.19一致的1%的NaCl溶液。
从温控器的功能出发,规定了“沸水断电时间”。但是,从健康角度来看,却存在着一个问题。有资料显示,自来水在处理过程中会形成卤代烃、氯仿等化合物,烧水过程中,卤代烃、氯仿含量与水温变化及沸腾持续时间长短密切相关。水温达到90℃时,卤代烃含量由原来的每升53微克上升到191微克,氯仿由每升43.8微克上升到177微克,均超过国家标准2倍;当水温升到100℃左右时,卤代烃和氯仿的含量分别下降到110微克和99微克,仍超过国家标准。但若继续沸腾3分钟后,卤代烃和氯仿含量分别降至9.2微克和8.3微克,符合国家标准。不过若继续长时间煮沸,水中其他不挥发性物质数量也会增加,对人体有害。
因此,烧开水以沸腾3分钟左右为佳。由此可见,在使用自来水的情况下,从健康角度出发,现有的沸水断电是不够科学的。市场上虽然有一些电水瓶、开水机产品提供了再加热并冠以“除氯”的功能,但实际效果尚未得到有效证实,而且反复煮沸对水质也会造成破坏。因此,建议在电水壶产品上提供一个煮沸延迟3分钟再断电的可选功能,且水开后降低功率至只需维持沸腾即可,这些在技术上都不难实现。如此便实现在最大限度地保证健康的同时也节能。
在水的“环保及卫生”指标的制定上,主要引用了产品材料,如不锈钢、塑料、橡胶等的理化指标。但是标准有的试验方法与实际工况不同,除了不锈钢材料为乙酸溶液煮沸浸泡再化验外,塑料材料试验中水浸泡温度仅为60℃,远低于沸水温度,在实际工作中,曾接到过多起烧水有异味的投诉。另外,即使产品中使用的不锈钢、塑料等材料都符合要求,但也不能排除生产装配过程二次污染的可能。直观感觉因人而已,建议能否直接对待检样品烧开过的纯水(蒸馏水)进行溶出物及其它成分的化验(试验前可用纯水煮沸1-2次并重新换水),这样更能真实地反映卫生指标。此外,对于市场上可能出现的如含有软化、离子杀菌或矿化等类似功能的电水壶产品,在水质的要求上还应参考其产品说明或明示特别分析。
标准草案初步规定电水壶的热效率最低为80% 。理论上讲,材料、结构相同时,加热功率越大,加热时间越短,壶体表面散失热量越少,热效率越高。因此,无绳壶、开水煲等大功率快速开水产品的热效率相对较高。相对于传统的有绳电水壶,由于功率相对较小,加热时间较长,加之壶体散热面积较大,理论上讲,效率相对较低(有待实验验证)。是否需要区别对待?此外,对于无绳壶这样底座和壶体电路触点需要频繁接触和分离的结构,功率提高,电流也增加,触点寿命将会受到很大影响。除增加功率外,提高壶体保温性能以减少散热也不失为好办法;改进电热元件的结构材料设计也能提高热效率,如放弃管状电热器件,改用不锈钢发热盘。