4. 实时仿真模式
作为激励/响应模式的衍生和改进,实时仿真模式采用了通用的基于FPGA的基带处理器,同时替代了矢量信号发生器的信号发生模块和矢量信号分析仪的信号分析模块,配合射频前端协同工作。对于射频前端部分,可以采用具有基带信号输入功能的矢量信号发生器和具有基带信号输出功能的矢量信号分析仪,或直接采用独立的射频上变频器和射频下变频器,通过基带信号接口与FPGA基带处理器相连接。实时仿真模式如图2-4所示:
图2-4:实时仿真模式
该测试模式最大的特点是将原本分离的信号发生和信号分析模块合二为一,在同一个基带处理器上依靠FPGA强大的实时处理能力,实现了从信号仿真到信号测量的全部功能,并且实现了从信号分析到信号发生的实时反馈,最终解决了RFID协议一致性测试中的实时握手通讯问题。除此之外,信号发生和信号分析模块的一体化,还为进一步提高测试速度提供了可能,FPGA的灵活可编程特性,也为快速应对未来RFID协议的测试需求提供了保障。
2.2 RFID协议一致性测试系统的关键技术
嵌入FPGA基带处理器的实时仿真模式,实质上是引入了“软件无线电”这一关键技术。所谓软件无线电技术,即通讯过程的信号由软件来确定,是一种用软件实现物理层链接的无线通讯设计。软件无线电技术的核心是将宽带A/D、D/A尽可能靠近天线端,采用软件数字化的实现尽可能多的无线电功能,其中心思想是在一个标准化、模块化的通用硬件平台上,通过软件编程,实现一种具有多模式无线通讯功能的开放式体系结构。
1992年5月在美国通讯系统会议上,约瑟夫?米托拉首次明确提出了“软件无线电”的概念。随着计算机技术的普及,软件无线电技术快速发展,特别是在测试测量领域以其独特的优势得到了越来越广泛的运用。软件无线电技术的主要优点在于它的灵活性,可以通过增加软件模块,方便地增加新功能。在软件无线电中,诸如信道带宽、调制参数、编码方式等都可以进行动态调整,以适应不同通讯或测试的需求。软件无线电技术具有较强的开放性,由于采用标准化、模块化结构,其硬件可以随器件和技术的发展而更新或扩展,软件也可以随需要不断升级,能够有效的降低系统的开发升级成本,提高资源的重复利用度,节约开发时间。
软件无线电作为一种开放式构架,在不同的具体应用中其体系结构也会稍有差异, 借鉴ITU-R SM.1537标准对软件无线电接收机的定义,我们可以看到适用于各种软件无线电系统的一般准则,如图2-5所示:
图2-5:软件无线电(接收机)的体系结构
软件无线电的体系结构包含三个关键要素:模块化硬件,开放高速总线,数字信号处理,以下将依次介绍各要素的特点及其对RFID协议一致性测试系统的影响。
1. 模块化硬件
随着无线通讯技术的高速发展,对于测试测量也提出了更高的要求,测试项目和范围与日俱增,测试精度和速度要求急剧提高。在测试系统中,对仪器的“智能”要求越来越高,仪器中微机的任务不断加重,仪器在很多方面逐渐向计算机靠拢,测试系统中包含的重复部件也越来越多,因此需要统筹地考虑仪器与计算机之间的系统结构。在这种背景下,1982年首次出现了一种与PC机配合使用的模块化仪器,测试系统的结构逐渐也从传统的机架层迭式结构发展成为模块化硬件结构。
基于模块化硬件的测试系统通过选择合适的硬件模块并在标准的软件环境中定制测试程序,即可满足各种具体的应用需求,采用模块化硬件构建的测试系统比传统仪器具有更高的同步特性、数据吞吐量、测量精度和灵活性。在RFID协议一致性测试中,以实时仿真模式为例,我们可以选择模块化的FPGA基带处理器、模块化的射频上变频器、模块化的射频下变频器来构成集成的测试系统。灵活的模块化硬件结构也为系统提供了良好的扩展性, FPGA基带处理器可以满足不断演进的RFID协议,通用的射频前端则提供了HF、UHF 以及Microwave等多种频率接口。
2. 开放高速总线
仅模块化硬件并不足以构成一个完整的测试系统,模块化硬件之间还需要开放的高速总线来连接成为一个有机的整体,在测试测量技术发展的过程中,先后出现了GPIB、VXI、PXI、PXI Express等多种仪器总线。
早在机架层迭式结构的阶段,人们就认识到几乎不可能采用独立仪器来实现一个完整的测试系统,提出了采用不同仪器组合,通过仪器总线来构建测试系统的方法。最早于60年代中期发展起来的惠普接口总线(HP-IB)是第一种被广泛应用的仪器总线,也被称为GPIB,它能够把最多15台仪器连接到一台控制器上,最高数据传输速率为1MB/s,许多仪器制造商提供了大量支持GPIB总线的测试仪器。GPIB总线的主要局限在于它的带宽,在应用于高数据流量的测试场合,如无线通讯测试时,可能成为系统的瓶颈。在模块化硬件结构基础上,则发展出了基于VEM总线的仪器扩展平台VXI总线,基于PCI总线的仪器扩展平台PXI总线,以及基于最先进的PCI Express总线的仪器扩展平台PXI Express总线。
PXI总线在每一个桥段上允许连接7个外围设备,使用PCI-PCI桥接后最多可以有256个扩展设备,能够达到132 MB/s的最大数据传输速率。在大幅度提高总线带宽的同时,PXI总线还加入了多背板同步时钟,把10MHz的参考时钟分布到所有的外围设备上,并且有8条可选择的总线触发线。PXI Express总线在具有PXI总线一系列优点的基础之上,更进一步的把最大数据传输速率提高到了数GB/s级别。在RFID协议一致性测试中,通讯过程通常在毫秒量级的时间内即完成,这就要求测试系统的各个组件之间具有可靠的高速同步机制,对于脱离开放高速总线的系统来说,精确的同步机制通常很难做到。另一方面,通讯信号的采集分析需要较高的采样率来保证信号的完整性,由此而带来的高数据流量也得益于开放高速总线而解决。
3. 数字信号处理
强大的数字信号处理是软件无线电技术的关键,具体又分为固化于模块化硬件上的硬件数字信号处理,以及运行于FPGA和CPU上的软件数字信号处理。在无线通讯测试领域,数字上变频(DUC)和数字下变频(DDC)是最常见的两种硬件数字信号处理功能。DUC可通过硬件进行正交数字上变频和基带信号插值, DDC可通过硬件进行正交数字下变频和基带信号抽取,从而大大降低信号的数据量,减少数据处理和传输时间。DUC和DDC的应用价值在于,在实际的射频测试仪器的实现中,出于抗干扰等一系列因素的考虑,A/D、D/A的转换通常并非直接在基带完成,而是在介于基带和最终射频信号之间的某一“中频”信号下完成,具体可参阅相关射频技术书籍。DUC和DDC实现了数字基带信号和数字中频信号之间的双向转换,此功能极大的提高了RFID协议一致性测试系统的性能。
运行于FPGA和CPU上的软件数字信号处理则能够完成基带信号相关的分析处理功能,其中 FPGA具有可配置的触发、定时和板载决策,能够实时地控制I/O信号,特别适合于RFID协议一致性测试中实时处理功能的构建,各种复杂的数字滤波、调制/解调、编码/解码、CRC以及逻辑控制算法在FPGA上都得以实时执行。CPU对于各种通用软件的强大支持特性,非常适合于完成复杂的非实时信号处理工作,以及构建上层的测试应用程序,如运用测试管理软件来组织RFID协议一致性测试众多的测试项目,实现复杂的自动化测试系统。
文章出自: 世科网