-
UID:6873
-
- 注册时间2013-06-17
- 最后登录2023-07-06
- 在线时间47小时
-
- 发帖96
- 搜Ta的帖子
- 精华0
- 世科币172
- 威望76
- 贡献值202
- 银元0
-
访问TA的空间加好友用道具
|
Recent research has helped to quantify how ICs couple to the structures on printed circuit boards that serve as antennas resulting in radiated emissions problems [7]. Most lines of electric flux emanating from an IC are captured by the circuit board or nearby metal objects and do not contribute significantly to radiated emissions below 1 GHz. On the other hand, electric field lines that escape the immediate environment of the IC/package structure induce common-mode currents on cables and chassis components. These common mode currents are generally responsible for unwanted radiated emissions. yL%K4$z Recently, it was shown that hybrid TEM cell measurements are capable of quantifying the electric field coupling potential of an IC/package configuration [8]. TEM cell measurements can be used to create models that express the ability of the IC to couple to external objects. These models can replace the complex IC/package structure in full-wave system models. Thus, with a single, repeatable measurement, it is possible to capture all the relevant information about an IC/package’s ability to couple noise to external objects through an electric field. ZO!I. MAGNETIC FIELD COUPLINGThe figure on the right illustrates an example of magnetic field coupling from an IC. In this case, the “antenna” is a cable being driven against the part of the circuit board on the opposite side of the IC. Magnetic flux generated by the IC wraps around the circuit board and generates a voltage across the board capable of driving high frequency currents onto the cable resulting in radiation. E%+Dl= The same hybrid TEM cell set-up that is used to measure electric-field coupling can be used to measure magnetic-field coupling. Generally, magnetic fields from IC/package structures cause radiated emissions problems when they wrap around other conductors (e.g. the circuit board’s ground plane) and generate a voltage across the conductor that drives common-mode currents onto cables or to other conducting objects that serve as antennas. L;
T8?+ x Hybrid TEM cell measurements quantify an IC/package’s ability to couple to nearby objects in this manner. Just as an electric-field hybrid TEM cell measurement can be used to determine an “electric moment”; a magnetic-field hybrid TEM cell test can be used to determine a “magnetic moment” that can represent the IC/package in full-wave simulations [9]. TkE 8D
n REFERENCES[1] IEC 61967-1 Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 1: General conditions and definitions, International Electrotechnical Commission, Geneva, Switzerland, March 2002. AjmVc]) [2] IEC 61967-2 Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 2: Measurement of radiated emissions, TEM-cell and Wideband TEM-cell method, International Electrotechnical Commission, Geneva, Switzerland, Draft 47A/619/NP, October 2001. ~Fe${2 [3] IEC 61967-3 Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 2: Measurement of radiated emissions, Surface scan method, International Electrotechnical Commission, Geneva, Switzer-land, Draft 47A/620/NP, October 2001. s8QMewU [4] IEC 61967-4 Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 4: 1Ω/150Ω direct coupling method, International Electrotechnical Commission, Geneva, Switzerland, April 2002. FqkDKTS\& [5] IEC 61967-5 Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 5: Workbench Faraday cage method, International Electrotechnical Commission, Geneva, Switzerland, February 2003. 3!3
xCO [6] IEC 61967-6 Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 5: Magnetic probe method, International Electrotechnical Commission, Geneva, Switzerland, June 2002. nIAx2dh? [7] H. Shim and T. Hubing, “Model for estimating radiated emissions from a printed circuit board with attached cables driven by voltage-driven sources,”IEEE Transactions on Electromagnetic Compatibility, vol. 47, no. 4, Nov. 2005, pp. 899-907. {p)",)td [8] S. Deng, T. Hubing and D. Beetner, “Characterizing the electric-field coupling from IC-heatsink structures to external cables using TEM-cell measurements,” to appear in the IEEE Trans. on EMC, 2008. ji1viv [9] T. Hubing, S. Deng, and D. Beetner, “Using electric and magnetic ‘moments’ to characterize IC coupling to cables and enclosures,”Proceedings of EMC Compo 2007 Conference, Turin, Italy, November 2007
|