-
UID:6814
-
- 注册时间2013-06-11
- 最后登录2023-07-17
- 在线时间152小时
-
- 发帖204
- 搜Ta的帖子
- 精华6
- 世科币421
- 威望212
- 贡献值202
- 银元0
-
访问TA的空间加好友用道具
- 发帖
- 204
- 世科币
- 421
- 威望
- 212
- 贡献值
- 202
- 银元
- 0
|
如果遵从热设计的基本原则进行设计,经过热设计之后的电子系统性能更好、可靠性更高,并且使用寿命更长。 热设计方面有两条基本原则:尽早尽简。由元件结点至环境的热流通路(译注:也称热阻)决定了元件的温度,其中环境通常是指局部环境的空气温度。 整风冷电子产品设计过程中的热设计策略 T5g}z5~" 如果遵从热设计的基本原则进行设计,经过热设计之后的电子系统性能更好、可靠性更高,并且使用寿命更长。 ]{Ytf'
bG 作者: 9BJP|L%q Byron Blackmore, Mentor Graphics Corp. Mechanical Analysis 部门FloTHERM.PCB产品经理, 在加拿大Technical UniversITy of Nova Scotia获得机械工程学士学会,在加拿大University of Alberta获得传热工程硕士学位。 #JFTD[1
Robin Bornoff, Mentor Graphics Corp. Mechanical Analysis 部门FloTHERM和FloVENT产品市场经理,1992年在英国Brunel University获得机械工程学士学位,并于1995年继续攻读了该校计算流体力学博士学位。 ^}+qd1r John Parry, Mentor Graphics Corp. Mechanical Analysis 部门研发经理,他在英国University of Leeds获取化学工程一级荣誉学士学位,之后在英国Birmingham University 获取博士学位。 wE.CZ%f 热设计方面有两条基本原则:尽早尽简。由元件结点至环境的热流通路(译注:也称热阻)决定了元件的温度,其中环境通常是指局部环境的空气温度。因此元件温度的控制属于系统设计层面的问题。在产品热设计过程中工程师应采用自上而下的方法来提升产品的可靠性(见下表)。 jIMT&5k
rff=ud>Jf 手工计算 pO*$'8L \DG
6 热交换过程广泛地存在于管内自然或强迫对流流动、气体外掠平板等其它现象中。由于热交换的计算关联式很难给出比较精确的计算结果,并且使用时候很容易出现错误,所以通常情况下我们建议使用一些经验的数据1。 ADTx _tE lTe7n'y^^ 一块0.2m水平放置的平板,在自然对流情况下其与空气的对流换热系数大约为5W m-2K,在空气流速3 ms-1强迫对流情况下其与空气的对流换热系数大约为15W m-2K。为了考虑辐射换热的影响,我们建议自然对流的对流换热系数可以认为是10 W m-2K,强迫对流的对流换热系数可以是10~20 W m-2K。 g[]UM;D* _(K )(& 首先,对于密闭的系统而言我们需要计算系统内的空气温度,对于强迫对流的系统而言可以假设进出口的温升为10~15°C,由此计算出强迫对流系统所需的空气流量。其次,计算所得的空气温度可以用于PCB板温度的计算。最后,通过类似Rjc等元件热阻计算元件的结温。 A{[joo #Sxk[[KwH* 对于简单的系统,元件结点至环境的热阻可以认为是元件至PCB板、PCB板至内部空气、内部空气至环境的三部分热阻之和。对于复杂的系统而言,元件结点至环境的热阻需要采用热阻网络模型,这需要比较丰富的经验,能够对热阻网络模做出一些假设,并且计算相应的热阻值。 0]3 ,0s $} ?s=O6D&
热交换过程通常都是三维的,所以手工计算或经验数据都有很大局限性。实际上由于热源分布和气流流动地不均匀性,PCB板上的温度并不一样。因此,手工计算和经验数据最大的缺点是无法对系统散热性能的改善提供帮助。 0pO{ {F -YXNB[C 计算流体力学 #DBg8 vD=>AAvG 我们建议采用自上而下的方法,在设计的早期阶段建立整个系统简单的计算流体动力学模型(CFD): a'T8U1 n(i Uc1Y 通过三维动态粒子流和可视化温度平面可以提供系统散热性能方面的信息 y9K U& |