-
UID:6814
-
- 注册时间2013-06-11
- 最后登录2023-07-17
- 在线时间152小时
-
- 发帖204
- 搜Ta的帖子
- 精华6
- 世科币421
- 威望212
- 贡献值202
- 银元0
-
访问TA的空间加好友用道具
- 发帖
- 204
- 世科币
- 421
- 威望
- 212
- 贡献值
- 202
- 银元
- 0
|
如果遵从热设计的基本原则进行设计,经过热设计之后的电子系统性能更好、可靠性更高,并且使用寿命更长。 热设计方面有两条基本原则:尽早尽简。由元件结点至环境的热流通路(译注:也称热阻)决定了元件的温度,其中环境通常是指局部环境的空气温度。 整风冷电子产品设计过程中的热设计策略 $GQphXb$ 如果遵从热设计的基本原则进行设计,经过热设计之后的电子系统性能更好、可靠性更高,并且使用寿命更长。 M6# \na 作者: FI\IY
R Byron Blackmore, Mentor Graphics Corp. Mechanical Analysis 部门FloTHERM.PCB产品经理, 在加拿大Technical UniversITy of Nova Scotia获得机械工程学士学会,在加拿大University of Alberta获得传热工程硕士学位。 S,lxM,DL& Robin Bornoff, Mentor Graphics Corp. Mechanical Analysis 部门FloTHERM和FloVENT产品市场经理,1992年在英国Brunel University获得机械工程学士学位,并于1995年继续攻读了该校计算流体力学博士学位。 F#6cF=};@ John Parry, Mentor Graphics Corp. Mechanical Analysis 部门研发经理,他在英国University of Leeds获取化学工程一级荣誉学士学位,之后在英国Birmingham University 获取博士学位。 i#k-)N _$ 热设计方面有两条基本原则:尽早尽简。由元件结点至环境的热流通路(译注:也称热阻)决定了元件的温度,其中环境通常是指局部环境的空气温度。因此元件温度的控制属于系统设计层面的问题。在产品热设计过程中工程师应采用自上而下的方法来提升产品的可靠性(见下表)。 KL
"Y!PN: u2 7S%2P 手工计算 PCtkjd d^tVD`Fm 热交换过程广泛地存在于管内自然或强迫对流流动、气体外掠平板等其它现象中。由于热交换的计算关联式很难给出比较精确的计算结果,并且使用时候很容易出现错误,所以通常情况下我们建议使用一些经验的数据1。 `Z:3`7c e|VJ9|;3 一块0.2m水平放置的平板,在自然对流情况下其与空气的对流换热系数大约为5W m-2K,在空气流速3 ms-1强迫对流情况下其与空气的对流换热系数大约为15W m-2K。为了考虑辐射换热的影响,我们建议自然对流的对流换热系数可以认为是10 W m-2K,强迫对流的对流换热系数可以是10~20 W m-2K。 u)7*Rj^ y5_XHi@u~o 首先,对于密闭的系统而言我们需要计算系统内的空气温度,对于强迫对流的系统而言可以假设进出口的温升为10~15°C,由此计算出强迫对流系统所需的空气流量。其次,计算所得的空气温度可以用于PCB板温度的计算。最后,通过类似Rjc等元件热阻计算元件的结温。 P])L8zK 2% %|fU9 对于简单的系统,元件结点至环境的热阻可以认为是元件至PCB板、PCB板至内部空气、内部空气至环境的三部分热阻之和。对于复杂的系统而言,元件结点至环境的热阻需要采用热阻网络模型,这需要比较丰富的经验,能够对热阻网络模做出一些假设,并且计算相应的热阻值。 ;,dkJ7M b~j~ 热交换过程通常都是三维的,所以手工计算或经验数据都有很大局限性。实际上由于热源分布和气流流动地不均匀性,PCB板上的温度并不一样。因此,手工计算和经验数据最大的缺点是无法对系统散热性能的改善提供帮助。 !_dR' iD<6t_8), 计算流体力学 "7d.i(vw s@s/'^` 我们建议采用自上而下的方法,在设计的早期阶段建立整个系统简单的计算流体动力学模型(CFD): V!xwb:J HlPG3LD! 通过三维动态粒子流和可视化温度平面可以提供系统散热性能方面的信息 61Bhm:O5W 在设计周期的早期探讨不同的散热方案 (Xo SG 将其作为设计发展过程中整合信息的平台 ^dfx~C 随着热仿真模型的细化,增强设计的可行性 x'qWM/ Gs_qO)~xo 概念设计 ?/'}JS(Sm ue6d~8& 概念设计阶段的时间非常短,有时仅需几天时间。CFD软件也必须转换角色,在很短的时间内进行建模和获取仿真结果。CFD软件将系统剖分成很多网格,并在这些网格控制体内计算流动和热交换的基本方程。每一个网格都具有相应的温度、空气流速和压力值。 -72j:nk ^i'y6J 要使CFD工具在概念设计中起作用,其网格必须100%可靠,并且不需要用户个人控制网格质量和密度。这种趋势导致那些使用自动网格技术的通用CFD工具在电子散热软件领域无所作为。 [N:BM% FQ M4?8x
uC 这个阶段的设计重点是分析热量从系统中去除的基本原理。对于空气冷却的电子产品而言,这个阶段的目标是估计系统所需的空气流量。那么,模型应该包含哪些元件呢? q (>c`5 S0LszW)e 首先是采用一个简单的箱体来描述电子产品的外壳,其中通风孔采用2维的简化模型来描述。二维简化模型的特性应由通风孔的开孔率和损失系数所确定。专业的电子散热CFD软件应具备定义通风孔直径、角度以及分布的功能。 XdsJwn F P^[/Qi}j 另外,产品内部的EMC屏蔽网也应考虑在内。在某些情况下强迫风冷系统中自然对流也会影响空气流动,所以在这些系统中需要包括浮升力的影响。此外,考虑浮升力的影响不应延长热仿真所需的时间。 OOB^gf}$' 3.vgu
kkk5 鉴于轴流风扇的成本比较低,所以在强迫风冷的设备中普遍都是用这类风扇。由于在概念设计阶段主要关注的是风扇的性能是否达到要求,所以一个二维形状的轴流风扇足以满足要求。但值得注意的是,风扇至少设置为线性特性曲线,而非固定流量。 <9ifPSvJ l
l<mE, 一般而言,电子产品建议采用抽风的方式,因为这样可以在系统内产生比较均匀的气流。抽风的弊端是风扇的工作温度比较高,影响风扇的寿命。 !M;A*:- kus}WJ 对生产商而言,使用便宜、小体积的风扇是非常具诱惑力的。但这通常不是一个好的选择,因为风扇工作在它的最大流量附近,此时噪音更大,并且风扇可靠性也下降。相反,应使用最大流量比系统散热所需空气流量大两至三倍的风扇,并且降低风机转速。 {/}^D- `Ko[r
R+
设计师应考虑电子产品中一切导热的元件,包括电子产品的外壳。PCB板可以采用一个各向同性的导热块来描述,其热导率根据PCB含铜量来确定, 约为5~10 Wm-1K-1。同时确定所有PCB板的散热量之和应等于系统的总热设计功耗。整个建模过程应在一个小时内完成,并且以更少的时间完成求解。 2o5;Uz1{ 5~r2sCDPk 尽管热仿真结果是近似值,但仿真结果可支持先期的手工计算,并提供系统级气流情况的相关信息。使用元件?JB热阻值可以估计元件的温升。 t;47(U &ao(!/im 模块化设计 x(~< |