论坛风格切换切换到宽版
  • 249阅读
  • 1回复

智能手机快速充电技术浅析 [复制链接]

上一主题 下一主题
离线szwelfast
 

发帖
49
世科币
84
威望
50
贡献值
119
银元
0
只看楼主 倒序阅读 使用道具 楼主  发表于: 2023-07-16
— 本帖被 mike 执行置顶操作(2023-08-05) —
 随着智能时代到来,智能手机已在人们的日常生活中有着不可或缺的地位,但是智能手机存在耗电量大,充电时间较长的缺陷,且电池都是锂电池,电池不断充放电会减少电池的使用寿命,因此电池的续航能力就成为巨大挑战,如何实现电池的快速充电是迫不及待的解决方法 %@R~DBS  
  充电器输出通过线缆连接到手机,在手机内部通过DCDC进行电压转换,一路供给系统,一路经过MOS管,供给电池以进行充电,这就是智能手机充电模型。 Q0{z).&\(e  
  但事实上,一般充电器的输出电压都会随输出电流增大而下降,即存在等效内阻。线缆和板级走线、MOS导通内阻,也不是理想的零阻抗,近似模型如下图所示。 pGIe=Um0W  
s(&;q4|  
  R0:充电器等小内阻;R1:线缆阻抗;R2:板级充电线路等效阻抗;R3:MOS和板级线路等效阻抗;Vsrc:理想充电器的输出电压;Vchg:DCDC前端电压;Vout:DCDC输出电压;Vbat:电池电压。 z]Acs  
  为便于分析,这个模型中,将充电器等效为理想充电器(理想充电器输出电压恒定,可输出电流至无穷大)和固定电阻的结合体,这与实际的充电器会随输出电流增加而电压下降的特征是吻和的。 {5Eyr$  
  1模型的数值分析 IX?ZbtdX$`  
  为便于分析,作如下假定和定义: g]`bnZ7  
  (1)假定系统耗电是恒定的,记为Isys; k_3j '  
  (2)假定DCDC转换效率为固定的X%; {TL +7kiX/  
  (3)将R0+R1+R2记为Rl,即Rl=R0+R1+R2; WF/l7u#4i  
  (4)充电器输出电流记为Ichg,流入电池电流记为Ibat。 w3#`1T`N  
  按照模型,可得出如下方程: ~tNY"{OV#  
  Vchg=Vsrc-Ichg*Rl式(1) 5.k}{{+  
  Vout=Vbat+Ibat*R3式(2) j@ C0af  
  根据能量守恒定律:Vchg*Ichg*X%=Vout*(Iout+Isys)式(3) 8ath45G@  
  2恒流充电中各物理量的变化 y#bK,}  
   恒流充电阶段 JmjxGcG  
  恒流充电阶段流入电池的电流不变,但Vbat会逐渐升高;由式(2)Vout也会随之升高,导致DCDC输出功率成比增加;根据式(3),DCDC前端需加大输入功率,为增大输入功率,需增加Ichg;根据式(1),由于线路阻抗Rl的存在,在增加Ichg会导致Vchg降低。 eKJ:?Lxv;  
  Vbat↑→Vout↑→Vout*Ibat↑→Ichg↑→Vchg↑ /p}{#DLB  
  一个疑问点,Ichg增加,但Vchg降低,这会减少Ichg增加所带来的功率增加,那么最终功率是否一定能增加?分析一下,由式(1)可得: w^ U}|h"  
  Pchg=Vchg*Ichg=(Vsrc-Ichg*Rl)*Ichg=Vsrc*Ichg-Rl*I2chg O8 $~*NFJf  
  这是一个二次函数,Pchg与Ichg关系如图所示。 3!bK d2"  
5=m3J !?  
  电流为Vsrc/2Rl时,达到最大功率V2src/4R2l;在电流升至Vsrc/2Rl前,功率会随电流增加而增加;当电流为Vsrc/2Rl时,对应电压Vchg为Vsrc/2。现实中电压是不允许降到这么低的,故可认为在工作范围内,功率是随电流增加而增大的。根据式(3),不难得出满足恒流的必要条件:DCDC前端最大可输入功率*转换效率〉恒流阶段充电最大功率。 $^K]&Mf t  
  DCDC前端最大可输入功率 ;{]8>`im&4  
  如上所述,理论上DCDC前端最大可输入功率为V2src/4R2l,但现实中,一方面为避免额定电流低的充电器,直接被大电流拉死;另一方面,DCDC输出电压要求高于输出电压,故会设置Vchg下限Min(Vchg)。当Vchg等于Min(Vchg)时,对应功率为所能提供给DCDC的最大功率,即图3中阴影面积。 R|$[U  
'xsbm^n6a&  
  恒流阶段充电最大功率: =zz+< !!  
  P=Vout*(Ibat+Isys)=(Vbat+Ibat*R3)*(Ibat+Isys)=Vbat*(Ibat+Isys)+Ibat*R3*(Ibat+Isys) \ibCR~W4  
  在这些参数中,除Ibat外为常量,故可得出,功率与Vbat存在线形关系。当Vbat最高时,功率最大;恒流过程中,恒流结束点的电压是最高的,故此时功率最大。 g&q]@m  
  如果不满足必要条件,即所能提供给DCDC的功率不够大,那么当电池电压升到某个值后,无法提供更大的功率,当电池电压再进一步升高时,充电电流只能下降。表现出来是恒流时间短。如果恒流开始阶段功率已达到最大,那么表现出来就是电流稳不住。 ]NbX`'  
,Y$F7&  
  图4给出了功率不满足的典型示意图。t1点达到功率最大值,由于电池电压的增加是先快后慢,所以在t1点附近电池下降较快,后逐渐平缓。电池电压升到一定程度,电压增幅会很小,因而电流近似不变。如t2到t3段,可能被认为是恒流,但仔细看电流还是会略有下降,平缓程度会与电池转换有关联。 *Kp}B}}J  
mYiSR   
评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

无聊

灌水
 
离线szwelfast

发帖
49
世科币
84
威望
50
贡献值
119
银元
0
只看该作者 沙发  发表于: 2023-07-16
各个参数对恒流能力的影响 ?) ,xZ1"  
  要提升恒流能力,就须从满足必要条件入手,要么提升DCDC前端最大可输入功率,要么降低恒流阶段充电最大功率,我们来分析一下各个参数对这两者的影响。 t0asW5f  
  Rl阻抗 7>2j=Y_Kp  
,I2re G  
  如图5所示,阻抗越大到达Min(Vchg)点的电流就越大,功率就越小。恒流能力就越差。即:相同条件下,线损和充电器压降越大,恒流能力越差。 [BZ(p  
  Vsrc S!I <m&Cgc  
|{ /O)3  
  如图6所示,Vsrc越低,到达Min(Vchg)点的电流越小,功率就越小,恒流能力就越差。即:相同条件下,充电器空载电压越低,恒流能力越差。 ,5<`+w#a  
   Min(Vchg) 5k%N<e` `  
Acq>M^ E3  
  如图7所示,Min(Vchg)下限设置越低,Iref越大,两者围成的面积即功率就越大,表示充电器可供到DCDC前端的最大功率就越大。即:相同条件下,Min(Vchg)下限设置越低,恒流能力就越强。 {u_k\m[Y  
  Ibat RkH oT^  
  P=Vout*(Ibat+Isys)可看出,Ibat越大,最大充电功率就越大,恒流能力就越强。即:恒流充电的电流越大,就越难恒流。 Q!+{MsZ  
   R3 Fx88 R !  
  由Vout=Vbat+Ibat*R3可看出,R3越大,Vout越大,最大充电功率越大。即:相同条件下,MOS管和连接至电池线路的阻抗越大,恒流能力就越差。 Hj4w i|  
   Vbat H'h4@S  
  由Vout=Vbat+Ibat*R3可看出,Vbat越大,Vout越大,最大充电功率越大。即:相同条件下,高电压规格的电池要比低电压规格的电池,保持恒流要困难。 p|9ECdU>;  
  充电器额定电流 :: 72~'tw  
  另外考虑到真实充电器输出电流是有限制的,相同条件下,额定电流小的充电器,要比额定电流大的功率小,所以补充一条:相同条件下,充电器额定电流越小,恒流充电的能力。理想充电器的电流可到无穷大,但所能到达的最大恒流是有限的,这意味着要做大电流充电,仅仅换充电器、支持大电流的充电芯片是不一定能实现的,还需要降低线损与阻抗、增加充电器额定电压等措施,在将这些措施都完美实现的同时,设计出了完全符合标准的快速充电智能手机。
f_P+qm  
v^18o$=K",  
2hA66ar{$  
UE`4$^qs  
_BLSI8!N@  
}!7DF  
N9h@1'>  
t5 v)6|  
文章出自: 世科网 i~s9Ot  
f{5| }PL  
 
快速回复
限200 字节
批量上传需要先选择文件,再选择上传
 
上一个 下一个